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Abstract. We present a vision for learning environments, called Science Learning 
Spaces, that are rich in engaging content and activities, provide constructive 
experiences in scientific process skills, and are as instructionally effective as a 
personal tutor. A Science Learning Space combines three independent software 
systems: 1) lab/field simulations in which experiments are run and data is collected, 2) 
modeling/construction tools in which data representations are created, analyzed and 
presented, and 3) tutor agents that provide just-in-time assistance in higher order skills 
like experimental strategy, representational tool choice, conjecturing, and argument. 
We believe that achieving this ambitious vision will require collaborative efforts 
facilitated by a component-based software architecture. We have created a feasibility 
demonstration that serves as an example and a call for further work toward achieving 
this vision. In our demonstration, we combined 1) the Active Illustrations lab 
simulation environment, 2) the Belvedere argumentation environment, and 3) a model-
tracing Experimentation Tutor Agent. We illustrate student interaction in this Learning 
Space and discuss the requirements, advantages, and challenges in creating one. 

The Science Learning Space Vision 
Imagine an Internet filled with possibility for student discovery. A vast array of 
simulations are available to explore any scientific field you desire. Easy-to-use data 
representation and visualization tools are at your fingertips. As you work, intelligent 
tutor agents are watching silently in the background, available at any time to assist 
you as you engage in scientific inquiry practices: experimentation, analysis, 
discovery, argumentation. This is our vision for Science Learning Spaces. Table 1 
summarizes how this vision contrasts with typical classroom experience. 

Table 1. What Science Learning Spaces Have to Offer 
 Typical Science Class Science Learning Space Vision 

Content Lectures, fixed topics, fixed 
pace, focus on facts 

Vast options, student choice and pace, 
focus on scientific process 

Activity Inquiry process hampered by 
mundane procedure & long waits 

Simulations speed time, leave technique 
lessons for later 

Tools Paper and pencil Data representation & argument 
construction  

Assistance Limited, 1 teacher for 30 
students 

Automated 1:1 assistance of tutor agents 

Assessment Large grain, limited assessment-
instruction continuity 

Tutor agents monitor student development 
at action level 

                                                           
1 Work performed while at Learning Research and Development Center, University of Pittsburgh 
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A Science Learning Space can be created by coordinating software components of 
three types: 1) lab/field simulations in which experiments are run and data is 
collected, 2) modeling/construction tools in which data representations are created, 
analyzed and presented, and 3) tutor agents that provide just-in-time assistance in 
higher order skills like experimental strategy, representational tool choice, 
conjecturing, and argument. Although the full Science Learning Space vision is 
currently out of reach, we have created a demonstration of its feasibility. This 
demonstration serves as a model for future work and a call for further community 
authoring toward achieving this vision. 

The Need for Collaborative Component-Based Development 
Research in intelligent learning environments typically involves designing and 
implementing an entire system from scratch. Time and resources spent on software 
engineering is taken away from the education and research the software is designed to 
support. Today the typical solution is for research labs to work within the context of 
an in-house software investment, evolving each new system from previous work. This 
makes replication and sharing more difficult and can lead to maintenance and 
deployment difficulties as restrictive platform requirements accumulate over time. 

This situation is growing intolerable, and so recently there has been a surge of 
interest in architectures and frameworks for interoperable and component-based 
systems [Ritter & Koedinger, 1997; Roschelle & Kaput, 1995; Suthers & Jones, 
1997]. This has led to a number of successful workshops on the topic (e.g., 
http://advlearn.lrdc.pitt.edu/its-arch/), the emergence of several standards efforts 
specifically targeted to advanced educational technology (e.g., 
www.manta.ieee.org/p1484/), and new repositories for educational object components 
(e.g., trp.research.apple.com). These efforts gain leverage from the rise of interactive 
Web technology and its associated emphasis on standards-based interoperability. 
Solutions for component-based systems are arriving, in the form of shared 
communication protocols, markup languages, and metadata formats. Although the 
component-based solutions developed to date are useful, they are inadequate for those 
building component-based intelligent learning environments in which the components 
must respond to the meaning of the content as well as its form and presentation. We 
see the development of techniques for sharing semantics across components and 
applications to be a critical research direction for the field. 

Recently we conducted a demonstration of the feasibility of integrating three 
different, independently developed components. Two of the components were 
complete intelligent learning environments in their own right: Active Illustrations 
[Forbus, 1997] enable learners to experiment with simulations of scientific 
phenomena, and to receive explanations about the causal influences behind the results 
[Forbus & Falkenhainer 1990; 1995]. Belvedere [Suthers & Jones, 1997; Suthers et 
al., 1997] provides learners with an “evidence mapping” facility for recording 
relationships between statements labeled as “hypotheses” and “data”. A Scientific 
Argumentation Coach [Paolucci et al., 1996] guides students to seek empirical 
support, consider alternate hypotheses, and avoid confirmation biases, among other 
things. The third component was an instance of a model-tracing Tutor Agent [Ritter & 
Koedinger, 1997] that contains a cognitive model of general experimentation and 
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argumentation process skills. This “Experimentation Tutor Agent” dynamically 
assesses student performance and is available to provide students with just-in-time 
feedback and context-sensitive advice. Our Learning Space Demonstration took place 
in the context of meetings of ARPA’s Computer Aided Education and Training 
Initiative program contractors. Using a MOO as a communication infrastructure, we 
demonstrated a scenario in which a student poses a hypothesis in the Belvedere 
evidence-mapping environment, uses the simulation to test that hypothesis in the 
Active Illustration environment and sends the results back to Belvedere for integration 
in the evidence map. Throughout this activity the Experimentation Tutor Agent was 
monitoring student performance and was available to provide assistance.  

From this experience we abstracted the notion of a Science Learning Space. In our 
demonstration, the Space was filled with Active Illustrations as the lab/field 
simulation component, Belvedere as a modeling/construction tool, and the 
Experimentation Tutor Agent and Argumentation Coach in tutor roles. In this paper 
we discuss how interoperability of these components was achieved through the use of 
Translator components that enable communication between existing functional 
components with little or no modification to them. We begin by examining the 
constraints that developing intelligent learning environments impose on the nature 
and types of components and their interactions, focusing on the importance of 
semantic interoperability. We then describe the demonstration configuration in detail, 
showing how it exploits a limited form of semantic interoperability. Finally, we 
reflect on the requirements, advantages, and future directions in creating Science 
Learning Spaces. 

Components for Intelligent Learning Environments 
Component-based development has a number purported economic and engineering 
benefits. Component-based systems are more economical to build because prior 
components can be re-used, saving time for new research and development efforts. 
They are easier to maintain due to their modular design and easier to extend because 
the underlying frameworks that make component-based development possible in the 
first place also make it easier to add new components. We can also expect better 
quality systems as developers can focus their efforts on their specialty, whether in 
simulation, tool, or tutor development. 

However, there is a deeper reason why we believe component-based educational 
software is important: It will enable us to construct, by composition, the multiple 
functionalities needed for a pedagogically complete learning environment. Various 
genres of computer-based learning environments have had their advocates. Each 
provides a valuable form of support for learning, but are insufficient in themselves. 
Yet today, the high development costs associated with building each type of 
environment leads to the deployment of systems with only a small subset of desirable 
functionality. 

For example, microworlds and simulations enable students to directly experience 
the behavior of dynamic systems and in some cases to change that behavior, 
experimenting with alternate models. These environments are consistent with the 
notion that deeper learning takes place when learners construct their own knowledge 
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through experience. However, simulations lack guidance: Taken alone, they provide 
no tools for the articulation and reflection on this knowledge and no learning agenda 
or intelligent assistance. 

On the other hand, intelligent tutoring systems provide substantial guidance in the 
form of a learning agenda, modeling of expert behavior, and intelligence assistance. 
This form of guidance is particularly important in domains where the target 
knowledge is not an easy induction from interactions with the artifact or system of 
interest. In such domains, intelligent tutors can lead to dramatic, “one sigma”, 
increases in student achievement [e.g., Koedinger, Anderson, Hadley, & Mark, 1997]. 

However, tutoring systems are themselves subject to the criticism. Emphasis on 
knowledge engineering usually leaves little time for careful design of performance 
tools to enhance pedagogical goals. Thus, there is a third need for representational 
tools for manipulating data, searching for patterns, or articulating and testing new 
knowledge. Spreadsheets, outliners, graphers, and other such tools provide 
representational guidance that help learners see certain patterns, express certain 
abstractions in concrete form, and discover new relationships. Representational tools 
can be designed based on cognitive analysis to address particular learning objectives 
[Koedinger, 1991; Reiser et al., 1991] and can function as “epistemic forms” [Collins 
& Ferguson, 1993] that afford desirable knowledge-building interactions. Yet 
representational tools provide only a subtle kind of guidance. As with simulations and 
microworlds, direct tutoring interventions are sometimes needed as well. Fortunately 
there is a double-synergy: Inspection of learners’ representations and simulation 
actions can provide a tutor with valuable information about what kind of guidance is 
needed.  

We believe that the ability to routinely synthesize new intelligent learning 
environments from off-the-shelf components that combine multiple functionalities 
rarely found today is sufficient justification for moving to a component-based 
development approach. The potential advantages of component-based systems must, 
of course, be weighed against their costs. Creating composable software components 
requires exposing enough of their internal representations, through carefully designed 
protocols, so that effective communication is possible. Doing this in ways that 
minimize communication overhead while maximizing reuse is a subtle design 
problem which can require substantial extra work. 

A Feasibility Demonstration of a Science Learning Space 
In this section we describe the Science Learning Space demonstration that we 
undertook. We begin with the learning activity that motivates our particular 
combination of tools; then we describe the underlying architecture and step through 
an example interaction scenario.  

The Learning Activity: Scientific Inquiry 
There is no point in combining components unless the learner benefits - in particular, 
the functionality provided by each component must contribute to the facilitation of 
effective learning interactions in some way. Consider scientific inquiry. Students have 
difficulty with the basic distinction between empirical observations and theoretical 
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statements. They need to learn that theories are posed to explain and predict 
occurrences and that theories are evaluated with respect to how consistent they are 
with all of the relevant observed data. They need to seek relevant evidence, both 
confirming and disconfirming, perform observations, and conduct experiments to test 
hypotheses or to resolve theoretical arguments between hypotheses. Experimentation 
requires certain process skills, such as the strategy of varying one feature at a time. 
Evaluation of the results of experiments requires scientific argumentation skills. Thus, 
this is a learning problem that could benefit from (1) experimentation in simulation 
environments, aided by coaching based on a process model of effective 
experimentation; and (2) articulation of and reflection upon one’s analysis of the 
relationships between hypotheses and evidence, aided by coaching based on 
principles of scientific argumentation.  

In our demonstration scenario, we imagine a student engaging in an investigation 
of the climate of Venus. She starts by posing a plausible hypothesis that Venus is cold 
because its excessive cloud cover makes it so. Next, she uses the multiple tools and 
intelligent assistance of the Science Learning Space to record, test, revise and argue 
for this hypothesis. 

The Implementation Architecture 
We describe the abstract implementation architecture (see Figure 1) behind our 
demonstration as one illustration of how several technologies enable the construction 
of component-based systems. Our collaboration began with a Learning Space 
demonstration involving an Experimentation Tutor Agent and Active Illustration 
[Forbus, 1997] communicating through a Lambda-MOO derivative using the "MOO 
Communications Protocol". Forbus had already made use of the MOO for 
communication between the Active Illustration simulation engine and a simulation 
user interface (bottom right of Figure 1). A MOO was chosen as the infrastructure 
because its notion of persistent objects and multi-user design made it easy for 
participants in experiments (both human and software) to be in a shared environment 
despite being on different machines, often in different parts of the country. The open, 
ASCII-based MOO Communications Protocol made it easy to add a Tutor Agent to 
monitor student performance as the basis for providing context-sensitive assistance. 
Koedinger used the plug-in tutor agent architecture [Ritter & Koedinger, 1997] which 
employs a simple Translator component (small box upper right of Figure 1) to 
manage the communication between tools and tutor agents. The Translator watched 
for messages between the Simulation Interface and the Active Illustration server, 
extracted messages indicating relevant student actions, and translated these student 
actions into the “selection-action-input” form appropriate for semantic processing by 
the Tutor Agent’s model-tracing engine. 
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Figure 1. Communication architecture used in the 

demonstration. 
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Subsequently, the Belvedere system and Argumentation Coach were added (left 
side of Figure 1). Belvedere itself provides a communication architecture, described 
in Suthers & Jones [1997] and abstracted as "BORBI" in Figure 1. Integration of the 
Belvedere subsystem into the MOO required the addition of one translator component 
(the other small box in the figure): no modification to Belvedere itself was required. 
The translator watched the MOO for Hypothesis and Simulation Run objects sent by 
the Simulation Interface. When seen, these were converted to Belvedere Hypothesis 
and Data objects and placed in the user’s “in-box” for consideration. 

Learning Scenario 
Returning to our student who is thinking about planetary climate, we illustrate a 
learning interaction scenario supported by our multi-application Learning Space. In 
the opening situation (Figure 2), the student has recorded in Belvedere’s evidence-
mapping facility the hypothesis that Venus is cold because it is cloudy. On the left are 
the Active Illustration simulation interface and the Tutor Agent’s Skillometer 
showing initial estimates of the student’s level of skill on several subskills. Next, 
Belvedere’s Argumentation Coach suggests that the student find some evidence for 
this hypothesis (Figure 3). Since the student can’t go to Venus to experiment, she 
decides to use an Active Illustration simulation of the Earth’s atmosphere as an analog 
instead. 

 
Figure 2. Opening situation: An initial 

hypothesis. 

  
Figure 3. Coaching scientific  

argumentation 

 
Figure 5. Plotting the results of the 

experiment.  

 
Figure 4. Creating an experimental run 

of the simulation. 
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In the Active Illustration interface, the 
student runs a baseline simulation using 
normal cloud cover parameters for Earth. 
The Tutor Agent observes these events in the 
MOO and updates estimates of baseline 
experimentation skills (lower portion of 
Figure 4). Then the student constructs a 
comparison simulation by increasing the 
Earth’s cloud cover to 95%, much more like 
Venus (Figure 4). If the student had 
attempted to change more than one parameter of the simulation, the Experimentation 
Tutor Agent would recognize this action as an instance of the change-more-than-one-
variable bug (see Table 2), and would have generated a feedback message to prompt 
the student toward designing a more discriminating experiment. Having created 
baseline and comparison experiments, the student uses Active Illustration’s plotting 
facility to show the results (Figure 5). To her surprise, Earth gets hotter when cloud 
cover increases. The student realizes that a new hypothesis is required. Using Active 
Illustration’s hypothesis recording facility, the student creates the hypothesis that the 
temperature of the atmosphere is affected positively by cloud cover and marks it as 
confirmed (Figure 6).  

 
Figure 6. Making a new hypothesis in Active 

Illustration. 

 
Figure 7. Evidence map with 

experimental results. 

The student then decides to send this hypothesis along with the results of the two 
experiments back to the Belvedere application. She does this by selecting these 
objects and clicking a “send to other tools” button. The objects are sent out on the 
MOO, where they are observed by the Belvedere-MOO Translator. It filters messages 
and translates hypothesis and data objects into Belvedere's representations and places 
them in Belvedere’s “in-box”. The in-box is a place where new information is kept 
until the student is ready to integrate it into the evidence map. The student selects 
information objects from the in-box and places them in her evidence map. At this 
point she uses Belvedere to construct the argument shown in Figure 7. The two 
experiments are connected with an “and” link and then connected to the hypothesis 
that temperature increases with cloud cover using an evidential “for” link. Finally, 
this experimentally derived hypothesis is used to argue against the original idea that 
Venus is cold because it is cloudy by making an evidential “against” link. 

The Experimentation Tutor Agent is able to understand the semantics of the 
experiment and hypothesis objects because it observed the history of the creation of 
these objects in the Simulation. As a consequence, this agent can provide the student 
with advice on the semantics of the argument. If, for instance, the student were to try 
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to use only the comparison experiment as evidence for the hypothesis, the agent can remediate 
this argumentation bug (see Table 2): “Just because the temperature was high with high cloud 
cover is not enough to argue for your hypothesis; you must also cite the contrasting baseline 
experiment where the temperature was lower with normal cloud cover.”  

 

 

Table 2. Domain-Independent Productions for Experiments and Argument 
Change-more-than-one-variable-bug (Pre-conception) 
IF the goal is to discover a hypothesis and you have a first 
experiment 
THEN change some variable values to create a second experiment 
 
Change-one-variable 
IF the goal is to discover a hypothesis 
   and you have a baseline experiment 
THEN change one variable value to create a comparison experiment 
 
One-trial-generalization-bug (Pre-conception) 
IF the goal is argue for hypothesis "The greater the <cloud cover> 
     the higher the <atmospheric temperature>" 
   and you did an experiment where <cloud cover> was high 
   and the resulting <atmospheric temperature> was high 
THEN argue the hypothesis is true by citing this experiment 
 
Argue-from-controlled-comparison 
IF the goal is argue for hypothesis "The greater the <cloud cover> 
     the higher the <atmospheric temperature>" 
   and you did two experiments, a baseline and comparison 
   and in one <cloud cover> was low and <temp> was low 
   and in the other <cloud cover> was higher and <temp> was higher 
THEN argue the hypothesis is true by citing these two experiments 

Semantic Interoperability for Constructive Learning Interactions 
Since all three systems made reference to the same set of objects (e.g., experiments, data, 
hypotheses), it was critical that a shared semantics was achieved. Below we discuss some 
alternate solutions and their roles.  
Shared Ontologies 
One possible approach to achieving semantic interoperability is to have a common 
ontology of educational objects that each system accesses. Significant portions of our 
communications were in effect a process of negotiating an informal shared ontology. 
The process may have been more efficient and involved fewer misunderstandings if a 
standard ontology or even reference vocabulary were available and known to all.  

However, while shared ontologies may be worthy goals in the long term, they 
require a high level of community consensus and standardization that is still well out 
of reach (if not in defining the standards, certainly in having them take hold). 
Furthermore, there is good reason to believe that multiple alternative representations 
of the same objects or concepts are not only inevitable, but useful. Different 
representations afford different kinds of processing. For example, the representation 
of an experiment in the simulation stores numerous simulation-related details whereas 
the Tutor Agent's representation of an experiment is at a more abstract level 
appropriate for reasoning with, rather than about, experiments. 
Translators to Preserve Advantages of Alternative Representations 
The use of Translator components allow developers of component systems to make 
their own representational decisions. Once these decisions have been made, 
developers can get together to identify the shared semantics and specify translators to 
implement them. It is not necessary to work out ahead of time the precise meaning 
and structure of all symbol structures in a shared ontology. The Translator 
components were critical to the relative ease in which we composed the three systems. 
Our composition task would not have been as easy, however, if Active Illustrations 
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and Belvedere had not built from the start in an open client-server architecture. These 
tools were “recordable” and “scriptable” by the Tutor Agent [Ritter & Koedinger, 
1997] and by each other. Unfortunately, too few office applications or educational 
objects are currently built in this open architecture. 
Granularity and Persistence of Identity 
The Active Illustrations simulation and Simulation Interface used the MOO to 
communicate in terms of the multiple parameter settings that define a simulation run 
or experimental trial, however, we wanted experimental trials to appear in Belvedere 
as single nodes in the evidence map. We needed a way to coordinate this difference in 
granularity while preserving the essential semantic identity of object representations 
as they are moved from tool to tool. This design problem ultimately led us to better 
understand how the software need for persistence of identity can sometimes be solved 
by addressing the learner's same need. 

We initially considered solving this problem by using the Belvedere-MOO 
Translator to aggregate individual parameter setting and simulation events into “data” 
objects that record the results of a particular trial. These data objects would then 
appear automatically in Belvedere’s in-box. However, focusing on the needs of the 
learner, we elected to follow a different approach for three major reasons. (1) Not all 
simulation runs will be informative enough to use. We wanted to avoid cluttering the 
in-box with many not so useful objects. (2) We wanted to encourage the learner to 
reflect on which runs were worth recording, by requiring that the learner make the 
decision of which to record. (3) The learner needs to make the connection between 
her experiences in the simulation environment and the representational objects that 
she manipulates in Belvedere. Hence the aggregated objects representing simulation 
runs should be created while still in the simulation environment and given visual 
identities recognizable to the learner, preferably by learner herself. 

The Simulation Interface already enabled the user to provide textual labels for 
simulation runs and we took advantage of that. We modified the Simulation Interface 
to provide a facility for broadcasting labeled simulation summary objects to the MOO 
(and hence to the Belvedere in-box) thereby enabling the learner to select relevant 
results without leaving the simulation context. This example reveals one limitation of 
a pure “plug and play” approach to component based systems: Communication 
protocols cannot anticipate all future needs.  

Conclusions 
We described a case study of component-based construction of a Science Learning 
Space, consisting of a simulation tool (Active Illustrations), a modeling tool 
(Belvedere), and tutoring agents (the Experimentation Tutor Agent and 
Argumentation Coach). We discussed several approaches to reducing the effort 
required to “hook up” diverse components and demonstrated the value of sharing 
semantics between applications. Information objects created with particular semantic 
identities in Active Illustrations retained their identity in their treatment in Belvedere 
and its Argumentation Coach. Furthermore, the Experimentation Tutor Agent treated 
these objects as having the same semantics in both situations.  

The Science Learning Space vision is to combine the pedagogical benefits of 
simulations, modeling tools, and intelligent assistance to support students in cycles of 
inquiry -- questioning, hypothesizing, modeling, reflecting and revising -- to both 
acquire new scientific content and to improve reasoning and learning skills. A major 
obstacle at this point is that too few developers are creating open components that are 
recordable and scriptable by other applications. Although media interoperability is 
widely available between “office” tools in current software environments, our vision 
is of a semantic interoperability between knowledge-based software for learning. In 
this vision, learner-constructed objects will maintain their meaning (though not 
necessarily the same underlying representation) when moved from one tool to 
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another. They will remain meaningful not only to the human user, but also to the 
software agents that interact with each tool. Consistent treatment of the learner’s 
constructions in different contexts by different software agents reinforces the deep 
semantics that we want learners to extract and generalize from specific experiences. 
At the same time, the contextual semantics of these objects accumulate as they are 
used. In a Science Learning Space, students experience the concept of experimental 
trial, for instance, by first thinking about it, designing discriminating trials in the 
simulation, and then thinking with it, using these trials to construct an argument. Tutor 
agents support students in properly encoding these learning experiences and in 
engaging in effective scientific reasoning processes. We hope our initial efforts to 
integrate components in a Science Learning Space point the way to future, more 
complete efforts.  
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